×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

尚芝群,E-mail: zhiqun_shang@tmu.edu.cn

中图分类号:R737.25

文献标识码:A

DOI:10.3969/j.issn.1007-6948.2024.06.009

参考文献 1
Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
参考文献 2
Tang QY,Cheng B,Dai RY,et al.The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells[J].Front Cell Dev Biol,2021,9:729498.
参考文献 3
Tyekucheva S,Bowden M,Bango C,et al.Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer[J].Nat Commun,2017,8(1):420.
参考文献 4
Kang JN,La Manna F,Bonollo F,et al.Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer[J].Cancer Lett,2022,530:156-169.
参考文献 5
Hinshaw DC,Shevde LA.The tumor microenvironment innately modulates cancer progression[J].Cancer Res,2019,79(18):4557-4566.
参考文献 6
Haffner MC,Zwart W,Roudier MP,et al.Genomic and phenotypic heterogeneity in prostate cancer[J].Nat Rev Urol,2021,18(2):79-92.
参考文献 7
Lei YL,Tang R,Xu J,et al.Applications of single-cell sequencing in cancer research:progress and perspectives[J].J Hematol Oncol,2021,14(1):91.
参考文献 8
Zhang YJ,Wang D,Peng M,et al.Single-cell RNA sequencing in cancer research[J].J Exp Clin Cancer Res,2021,40(1):81.
参考文献 9
Yuan S,Norgard RJ,Stanger BZ.Cellular plasticity in cancer[J].Cancer Discov,2019,9(7):837-851.
参考文献 10
Shen MM,Abate-Shen C.Molecular genetics of prostate cancer:new prospects for old challenges[J].Genes Dev,2010,24(18):1967-2000.
参考文献 11
Henry GH,Malewska A,Joseph DB,et al.A cellular anatomy of the normal adult human prostate and prostatic urethra[J].Cell Rep,2018,25(12):3530-3542.e5.
参考文献 12
Guo WX,Li L,He J,et al.Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips[J].Nat Genet,2020,52(9):908-918.
参考文献 13
Song HB,Weinstein HNW,Allegakoen P,et al.Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states[J].Nat Commun,2022,13(1):141.
参考文献 14
Ge GZ,Han Y,Zhang JY,et al.Single-cell RNA-seq reveals a developmental hierarchy super-imposed over subclonal evolution in the cellular ecosystem of prostate cancer[J].Adv Sci(Weinh),2022,9(15):e2105530.
参考文献 15
Rajbhandary S,Dhakal H,Shrestha S.Tumor immune microenvironment(TIME)to enhance antitumor immunity[J].Eur J Med Res,2023,28(1):169.
参考文献 16
Schreiber RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.
参考文献 17
Majidpoor J,Mortezaee K.The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J].Clin Immunol,2021,226:108707.
参考文献 18
Liu YT,Sun ZJ.Turning cold tumors into hot tumors by improving T-cell infiltration[J].Theranostics,2021,11(11):5365-5386.
参考文献 19
Ma ZH,Zhang WW,Dong BJ,et al.Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy[J].Theranostics,2022,12(11):4965-4979.
参考文献 20
Xiang XN,Wang JG,Lu D,et al.Targeting tumor-associated macrophages to synergize tumor immunotherapy[J].Signal Transduct Target Ther,2021,6(1):75.
参考文献 21
Li CX,Xu XF,Wei SH,et al.Tumor-associated macrophages:potential therapeutic strategies and future prospects in cancer[J].J Immunother Cancer,2021,9(1):e001341.
参考文献 22
Siefert JC,Cioni B,Muraro MJ,et al.The prognostic potential of human prostate cancer-associated macrophage subtypes as revealed by single-cell transcriptomics[J].Mol Cancer Res,2021,19(10):1778-1791.
参考文献 23
Tuong ZK,Loudon KW,Berry B,et al.Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J].Cell Rep,2021,37(12):110132.
参考文献 24
Masetti M,Carriero R,Portale F,et al.Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer[J].J Exp Med,2022,219(2):e20210564.
参考文献 25
Zhang XY.Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer[J].Cancer Commun(Lond),2019,39(1):76.
参考文献 26
Laplane L,Duluc D,Bikfalvi A,et al.Beyond the tumour microenvironment[J].Int J Cancer,2019,145(10):2611-2618.
参考文献 27
Xin SY,Liu X,Li ZY,et al.ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer[J].Exp Hematol Oncol,2023,12(1):49.
参考文献 28
Chen SJ,Zhu GH,Yang Y,et al.Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J].Nat Cell Biol,2021,23(1):87-98.
参考文献 29
Hayes AR,Brungs D,Pavlakis N.Osteoclast inhibitors to prevent bone metastases in men with high-risk,non-metastatic prostate cancer:a systematic review and meta-analysis[J].PLoS One,2018,13(1):e0191455.
参考文献 30
Jovic D,Liang X,Zeng H,et al.Single-cell RNA sequencing technologies and applications:a brief overview[J].Clin Transl Med,2022,12(3):e694.
参考文献 31
Wagner J,Rapsomaniki MA,Chevrier S,et al.A single-cell atlas of the tumor and immune ecosystem of human breast cancer[J].Cell,2019,177(5):1330-1345.e18.
参考文献 32
Longo SK,Guo MG,Ji AL,et al.Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J].Nat Rev Genet,2021,22(10):627-644.
参考文献 33
Hirz T,Mei SL,Sarkar H,et al.Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses[J].Nat Commun,2023,14(1):663.
参考文献 34
Biffi G,Tuveson DA.Diversity and biology of cancer-associated fibroblasts[J].Physiol Rev,2021,101(1):147-176.
参考文献 35
Sahai E,Astsaturov I,Cukierman E,et al.A framework for advancing our understanding of cancer-associated fibroblasts[J].Nat Rev Cancer,2020,20(3):174-186.
参考文献 36
Friedman G,Levi-Galibov O,David E,et al.Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+)and PDPN(+)CAFs to clinical outcome[J].Nat Cancer,2020,1(7):692-708.
参考文献 37
Levi-Galibov O,Lavon H,Wassermann-Dozorets R,et al.Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer[J].Nat Commun,2020,11(1):6245.
参考文献 38
Monteran L,Erez N.The dark side of fibroblasts:cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J].Front Immunol,2019,10:1835.
参考文献 39
Vickman RE,Broman MM,Lanman NA,et al.Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment[J].Prostate,2020,80(2):173-185.
参考文献 40
Du HY,Wang H,Luo YW,et al.An integrated analysis of bulk and single-cell sequencing data reveals that EMP1(+)/COL3A1(+)fibroblasts contribute to the bone metastasis process in breast,prostate,and renal cancers[J].Front Immunol,2023,14:1313536.
参考文献 41
Evans AJ.Treatment effects in prostate cancer[J].Mod Pathol,2018,31(S1):S110-S121.
参考文献 42
Omlin A,Pezaro C,Mukherji D,et al.Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms[J].Eur Urol,2013,64(2):300-306.
参考文献 43
Taavitsainen S,Engedal N,Cao S,et al.Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse[J].Nat Commun,2021,12(1):5307.
参考文献 44
Cheng Q,Butler W,Zhou YL,et al.Pre-existing Castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy[J].Eur Urol,2022,81(5):446-455.
参考文献 45
Bolis M,Bossi D,Vallerga A,et al.Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression[J].Nat Commun,2021,12(1):7033.
参考文献 46
He MX,Cuoco MS,Crowdis J,et al.Transcriptional mediators of treatment resistance in lethal prostate cancer[J].Nat Med,2021,27(3):426-433.
参考文献 47
Graff JN,Alumkal JJ,Drake CG,et al.Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer[J].Oncotarget,2016,7(33):52810-52817.
参考文献 48
Guan XN,Polesso F,Wang CJ,et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J].Nature,2022,606(7915):791-796.
目录contents

    摘要

    前列腺癌(PCa)在临床、分子和形态学水平上表现出显著的异质性。单细胞RNA测序(scRNA-seq)技术凭借其在单细胞水平上对分子特征的精细描绘能力,能够深入分析多种细胞类型,包括上皮细胞、肿瘤相关成纤维细胞以及构成免疫微环境的细胞群体。该技术揭示了肿瘤进展的动态过程以及细胞间复杂的交互作用。本综述总结了scRNA-seq在PCa中的最新研究进展,旨在为PCa的精准医疗提供新的理解视角。

  • 前列腺癌(prostate cancer,PCa)是全球男性中第二常见的癌症,也是癌症相关死亡的主要原因之一[1]。研究表明,恶性上皮细胞与肿瘤微环境(tumour microenvironment,TME)之间的相互作用是推动PCa进展的关键因素[2-3]。肿瘤细胞可以通过自分泌和旁分泌改变并维持其生存及发展的条件,进而促进癌症的进展。同时,TME中某些组分间的相互作用也会进一步促进肿瘤细胞的恶性增殖[4-5]

  • PCa在临床、分子和形态学水平上都表现出显著的异质性[6],因此,传统研究方法在揭示TME内复杂交互作用及细胞异质性方面存在着局限。近年来,单细胞RNA测序(single cell RNA sequencing,scRNA-seq)的出现为PCa研究提供了新的视角。该技术能够在单细胞分辨率下揭示肿瘤细胞的基因表达异质性,为研究肿瘤发生、发展、转移以及治疗反应提供了前所未有的精确度[7]。此外,单细胞组学有助于识别TME中的关键细胞群体,通过研究与肿瘤细胞的相互作用,揭示其影响肿瘤的进展和治疗反应的具体机制[8]。本综述回顾了单细胞技术在PCa中的最新研究成果,并讨论了未来的方向。

  • 1 sc-RNA seq揭示前列腺癌中上皮细胞的异质性

  • 前列腺组织由上皮细胞、间质细胞和免疫细胞在内的各种类型细胞组成,它们的转录谱各不相同[9]。而在单细胞视角下,前列腺组织的细胞类型主要包括上皮细胞、间质细胞(内皮细胞和成纤维细胞)、免疫细胞(T细胞、髓系细胞、B细胞和浆细胞)。其中,上皮细胞往往占据更大的比例。先前的研究发现,前列腺上皮细胞主要由基底细胞、管腔细胞和神经内分泌细胞组成[10]

  • 随着单细胞组学的广泛应用,PCa发展和进展中上皮细胞的更深层异质性逐渐被揭开。Henry等[11]发现了两种额外的上皮细胞群,分别是hillcock细胞和club细胞,这两种细胞首次在肺上皮中被描述,主要分布在中央区和移行区,而经典的管腔细胞主要在外周区。Guo等[12]基于scRNA-seq技术分析了来自小鼠前列腺的35 129个细胞,并鉴定了以Tacstd2、Ck4和Psca为标志基因的独特管腔细胞类型,称为C型管腔细胞(luminal-C)。研究将位于远端前列腺内陷尖端的Dist-Luminal-C细胞鉴定为管腔祖细胞群,并提出了其作为PCa潜在起源细胞之一的可能性。

  • 应用scRNA-seq技术,除了可以探索上皮细胞的分类与肿瘤起源,还可以阐明上皮细胞的生物学功能。Song等[13]研究发现,不同于EGR+肿瘤细胞,EGR-肿瘤细胞与非恶性管腔细胞具有一致的异质性。此外,EGR-患者的肿瘤、基质和CD4+T细胞中,PD-1和INF-γ等信号通路均上调,这意味着ERG-肿瘤细胞可能会诱导产生独特的肿瘤微环境。Ge等[14]聚焦于分析PCa亚克隆进化以及转录异质性。在对14位PCa患者进行scRNA-seq分析后,识别出对应不同亚克隆模式的4种转录亚型:EMT样(亚型0)、管腔A样(亚型1)、管腔B/C样(亚型2)和基底样(亚型3)。亚克隆与肿瘤组织中的其他细胞类型表现出不同的交互强度,这可能会调节亚克隆的不同转录亚型。以上研究详细描绘了在单细胞视角下,PCa上皮细胞的起源、构成和异质性。

  • 2 肿瘤免疫微环境的单细胞组学分析

  • 肿瘤免疫微环境(tumour immune microenvironment,TIME)包括肿瘤细胞、淋巴细胞(T细胞、B细胞和NK细胞)、髓系细胞(单核细胞、巨噬细胞、树突状细胞等)、细胞因子等[515]。正常状态下,免疫系统会通过肿瘤免疫循环来消灭肿瘤细胞,但肿瘤会渐渐将TIME塑造成免疫抑制状态来实现免疫逃逸[16]。因此,TIME在决定肿瘤行为和对治疗的反应方面尤为重要。PCa通常被认为是冷肿瘤[17]。冷肿瘤是指免疫抑制细胞,包括髓源性抑制细胞(myeloid-derived suppressor cell,MDSC)、调节性抑制性T细胞(Treg)和肿瘤相关巨噬细胞(tumor associated macrophage,TAM)富集,细胞毒性T淋巴细胞(cytotoxic T-lymphocyte,CTL)浸润不良,肿瘤突变负荷(tumor mutation burden,TMB)低、主要组织相容性复合体(major histocompatibility complex,MHC)-I表达低[18]。如何促使免疫微环境由冷转热一直是PCa领域的热点[19]。鉴于免疫微环境在PCa中的重要性以及高度异质性,借助单细胞测序的高分辨率特性来进行进一步探究是十分必要的。

  • TAM是TIME中的重要组成部分,许多研究都表明TAM在调节肿瘤进展中的双重身份[20-21]。Joseph等[22]通过scRNA-seq从PCa中的髓系细胞中分离出独特的巨噬细胞群体,并鉴定出集落刺激因子1受体(CSF1R)作为免疫抑制性巨噬细胞扩张的关键调节因子。Tuong等[23]应用scRNA-seq发现了一个以金属硫蛋白(metallothionein,MT)家族基因高表达为特征的独特TAM亚群“MAC-MT”,该亚群IFN-γ、THF及CXCL9和CXCL10的表达增加,表明其与抑癌免疫反应相关[23]。此外,还有研究发现了与脂质代谢相关的TAM。Masetti等[24]对分离出的CD45+免疫细胞进行scRNA-seq分析,鉴定出两种不同的巨噬细胞亚型Mac1和Mac2。相较于邻近非肿瘤组织,Mac1和Mac2的数量在肿瘤组织中均有所增加,且与脂质代谢相关通路相关,其中Mac2的相关性更为明显。

  • 随着疾病进展,PCa易向淋巴结和骨转移[25]。而肿瘤的转移离不开与肿瘤微环境的相互作用[26]。通过对PCa淋巴结转移灶和原发灶样本的单细胞测序,Xin等[27]发现淋巴结转移灶的TME中CD8+T细胞、NK细胞和单核细胞比例低于原发灶,而Th细胞和Treg细胞则相反。此外,另一项研究指出PCa中存在一群破骨细胞(osteoclast,OC)相关途径高表达的TAM亚群[28]。由于破骨细胞在骨转移中起着至关重要的作用[29],因此这一亚群的发现,表明早期阶段的PCa可能就已经具备转移的潜力。

  • 尽管单细胞测序为肿瘤研究提供了全新的视角[30]。但这种方法在分离细胞的过程中丢失了细胞的空间分布和病理信息[31]。空间转录组学(spatial transcriptomics,ST)的出现刚好填补这一缺陷,ST图谱提供了基因表达和细胞间相互作用的清晰定位[32]。Hirz等[33]整合了scRNA-seq与ST,发现与健康前列腺组织相比,PCa免疫微环境中具有耗竭表型的CTL和NKdim细胞比例更高,Treg活性评分也更高。同时MDSC,包括MDSC样单核细胞和M2样巨噬细胞在肿瘤组织中富集,CCL20-CCR6轴是两者间通讯的重要途经。上述研究展示了单细胞组学在研究TIME异质性方面的独特优势,并为解析TIME的复杂性和异质性提供了有力的支持。

  • 3 前列腺癌中肿瘤相关成纤维细胞的功能亚群

  • 肿瘤相关成纤维细胞(cancer-associated fibroblast,CAF)是实体瘤中TME的核心组成部分[34]。CAF在表型、起源和功能上具有高度异质性[35]。这种异质性主要体现在成纤维细胞影响肿瘤进展和转移[36],包括促进肿瘤增殖、血管生成和细胞外基质(ECM)重塑[37]。此外,CAF可通过调节免疫微环境以促进免疫抑制[38]。ScRNA-seq的应用更好地揭示了PCa中CAF的异质性。

  • 一项研究利用scRNA-seq鉴定出CAF的6个亚群,发现CAF募集了更多的髓系细胞到TME中,这可能与趋化因子CCL2和CXCL12的表达增加有关[39]。另一项研究在前列腺癌中发现了EMP1+/COL3A1+CAF亚群,可能促进肿瘤骨转移[40]。总的来说,scRNA-seq的出现极大地革新了PCa中CAFs研究领域。

  • 4 单细胞组学在去势抵抗性前列腺癌耐药机制研究中的应用价值

  • 雄激素受体(androgen receptor,AR)介导的信号在PCa的进展过程中发挥着重要作用[10]。雄激素剥夺疗法(androgen deprivation therapy,ADT)是局部晚期、生化复发PCa和转移性PCa患者的主要治疗方法[41]。然而,大多数最初对ADT敏感的患者都会对治疗产生耐药性,几乎不可避免地会发展为去势抵抗性前列腺癌(castration resistant prostate cancer,CRPC),预后极差[42]。因此,利用scRNA-seq来构建去势抵抗性PCa发生过程的纵向景观是必要的。

  • 恩杂鲁胺(enzalutamide,ENZ)是第二代AR拮抗剂。Taavitsainen等[43]在单细胞水平上分析了LNCaP细胞系和LNCaP ENZ耐药细胞系,发现一些预先存在并持续的细胞亚群,与疾病复发有关。类似的,Cheng等[44]在早期PCa中发现了一小部分高度可塑的CRPC样细胞,并证明其与生化复发和远处转移相关。这意味着CRPC样细胞并不完全是ADT治疗后进化选择的结果,可能需要在疾病早期进行干预。

  • 单细胞测序技术为PCa进展至CRPC阶段这一过程提供了新颖的见解,同时也对于CRPC肿瘤细胞转录谱的变化及影响进行了全面的刻画。Bolis等[45]通过对人源性组织异种移植(patient-derivedxenografts,PDX)模型进行scRNA-seq分析发现,CRPC肿瘤细胞转录谱的普遍特征是经典AR信号通路的抑制和与MYC相关的促增殖基因表达上调。另外,去势后的TME也会发生改变,具体表现为M2样表型的TAM丰度增加,而M1样表型的TAM丰度减少。He等[46]从常见的转移性CRPC转移位点(骨、淋巴结和肝脏)中取活检进行单细胞转录组分析,发现无论是否接受ENZ治疗,肿瘤细胞都共表达多种AR亚型。一部分接受ENZ治疗的患者,CTL克隆扩增,同时功能障碍标志物表达相对增高[47]。另一项研究进一步探索了CRPC中免疫细胞转录谱改变与ICB疗效之间的关系[48]。研究从接受ICB治疗后的CRPC患者中取样进行scRNA-seq分析,结果显示在ICB治疗响应者中,CD8+T细胞表现出AR失活的特征。此外,AR的下调与T细胞功能改善存在相关性。以上这些研究提供了对CRPC的发生、转录调控以及免疫治疗等方面的见解,为遏制PCa向CRPC进展创造了更多的可能性。

  • 5 总结与展望

  • 单细胞技术在PCa中的应用,提供了不同细胞类型的转录谱景观,描绘了同一细胞类型亚群间的谱系多样性,全面地展示了PCa的高度异质性。scRNA-seq还帮助研究人员发现了很多新的细胞亚群,可以在疾病分型和评估转移复发风险及治疗反应等方面提供更加精准的评估,从而推动PCa精准医疗的发展。

  • scRNA-seq技术凭借其高分辨率的优势,在揭示肿瘤细胞的异质性以及与其他细胞的复杂相互作用方面优势明显。但由于样本处理方法的限制,单细胞丢失了组织空间信息。而且这可能会导致一些细胞在离开特定微环境或在酶解过程中发生基因表达谱的改变。空间转录组的出现极大地填补了这一重要缺陷,组织原位细胞的真实基因表达情况得以保留。因此,未来scRNA-seq联合空间转录组测序必将是肿瘤研究的趋势。此外,单细胞与其他组学联合分析,包括基因组学、表观组学和代谢组学等,可以多维度地揭示肿瘤异质性以及同一个细胞内的不同组学层面之间的互动关系。总之,单细胞测序技术在PCa研究中的应用前景广阔,未来单细胞多组学联合将揭示出更多关于疾病机制的深层次理解,开启PCa精准治疗的新时代。

  • 参考文献

    • [1] Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.

    • [2] Tang QY,Cheng B,Dai RY,et al.The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells[J].Front Cell Dev Biol,2021,9:729498.

    • [3] Tyekucheva S,Bowden M,Bango C,et al.Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer[J].Nat Commun,2017,8(1):420.

    • [4] Kang JN,La Manna F,Bonollo F,et al.Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer[J].Cancer Lett,2022,530:156-169.

    • [5] Hinshaw DC,Shevde LA.The tumor microenvironment innately modulates cancer progression[J].Cancer Res,2019,79(18):4557-4566.

    • [6] Haffner MC,Zwart W,Roudier MP,et al.Genomic and phenotypic heterogeneity in prostate cancer[J].Nat Rev Urol,2021,18(2):79-92.

    • [7] Lei YL,Tang R,Xu J,et al.Applications of single-cell sequencing in cancer research:progress and perspectives[J].J Hematol Oncol,2021,14(1):91.

    • [8] Zhang YJ,Wang D,Peng M,et al.Single-cell RNA sequencing in cancer research[J].J Exp Clin Cancer Res,2021,40(1):81.

    • [9] Yuan S,Norgard RJ,Stanger BZ.Cellular plasticity in cancer[J].Cancer Discov,2019,9(7):837-851.

    • [10] Shen MM,Abate-Shen C.Molecular genetics of prostate cancer:new prospects for old challenges[J].Genes Dev,2010,24(18):1967-2000.

    • [11] Henry GH,Malewska A,Joseph DB,et al.A cellular anatomy of the normal adult human prostate and prostatic urethra[J].Cell Rep,2018,25(12):3530-3542.e5.

    • [12] Guo WX,Li L,He J,et al.Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips[J].Nat Genet,2020,52(9):908-918.

    • [13] Song HB,Weinstein HNW,Allegakoen P,et al.Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states[J].Nat Commun,2022,13(1):141.

    • [14] Ge GZ,Han Y,Zhang JY,et al.Single-cell RNA-seq reveals a developmental hierarchy super-imposed over subclonal evolution in the cellular ecosystem of prostate cancer[J].Adv Sci(Weinh),2022,9(15):e2105530.

    • [15] Rajbhandary S,Dhakal H,Shrestha S.Tumor immune microenvironment(TIME)to enhance antitumor immunity[J].Eur J Med Res,2023,28(1):169.

    • [16] Schreiber RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.

    • [17] Majidpoor J,Mortezaee K.The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J].Clin Immunol,2021,226:108707.

    • [18] Liu YT,Sun ZJ.Turning cold tumors into hot tumors by improving T-cell infiltration[J].Theranostics,2021,11(11):5365-5386.

    • [19] Ma ZH,Zhang WW,Dong BJ,et al.Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy[J].Theranostics,2022,12(11):4965-4979.

    • [20] Xiang XN,Wang JG,Lu D,et al.Targeting tumor-associated macrophages to synergize tumor immunotherapy[J].Signal Transduct Target Ther,2021,6(1):75.

    • [21] Li CX,Xu XF,Wei SH,et al.Tumor-associated macrophages:potential therapeutic strategies and future prospects in cancer[J].J Immunother Cancer,2021,9(1):e001341.

    • [22] Siefert JC,Cioni B,Muraro MJ,et al.The prognostic potential of human prostate cancer-associated macrophage subtypes as revealed by single-cell transcriptomics[J].Mol Cancer Res,2021,19(10):1778-1791.

    • [23] Tuong ZK,Loudon KW,Berry B,et al.Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J].Cell Rep,2021,37(12):110132.

    • [24] Masetti M,Carriero R,Portale F,et al.Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer[J].J Exp Med,2022,219(2):e20210564.

    • [25] Zhang XY.Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer[J].Cancer Commun(Lond),2019,39(1):76.

    • [26] Laplane L,Duluc D,Bikfalvi A,et al.Beyond the tumour microenvironment[J].Int J Cancer,2019,145(10):2611-2618.

    • [27] Xin SY,Liu X,Li ZY,et al.ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer[J].Exp Hematol Oncol,2023,12(1):49.

    • [28] Chen SJ,Zhu GH,Yang Y,et al.Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J].Nat Cell Biol,2021,23(1):87-98.

    • [29] Hayes AR,Brungs D,Pavlakis N.Osteoclast inhibitors to prevent bone metastases in men with high-risk,non-metastatic prostate cancer:a systematic review and meta-analysis[J].PLoS One,2018,13(1):e0191455.

    • [30] Jovic D,Liang X,Zeng H,et al.Single-cell RNA sequencing technologies and applications:a brief overview[J].Clin Transl Med,2022,12(3):e694.

    • [31] Wagner J,Rapsomaniki MA,Chevrier S,et al.A single-cell atlas of the tumor and immune ecosystem of human breast cancer[J].Cell,2019,177(5):1330-1345.e18.

    • [32] Longo SK,Guo MG,Ji AL,et al.Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J].Nat Rev Genet,2021,22(10):627-644.

    • [33] Hirz T,Mei SL,Sarkar H,et al.Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses[J].Nat Commun,2023,14(1):663.

    • [34] Biffi G,Tuveson DA.Diversity and biology of cancer-associated fibroblasts[J].Physiol Rev,2021,101(1):147-176.

    • [35] Sahai E,Astsaturov I,Cukierman E,et al.A framework for advancing our understanding of cancer-associated fibroblasts[J].Nat Rev Cancer,2020,20(3):174-186.

    • [36] Friedman G,Levi-Galibov O,David E,et al.Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+)and PDPN(+)CAFs to clinical outcome[J].Nat Cancer,2020,1(7):692-708.

    • [37] Levi-Galibov O,Lavon H,Wassermann-Dozorets R,et al.Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer[J].Nat Commun,2020,11(1):6245.

    • [38] Monteran L,Erez N.The dark side of fibroblasts:cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J].Front Immunol,2019,10:1835.

    • [39] Vickman RE,Broman MM,Lanman NA,et al.Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment[J].Prostate,2020,80(2):173-185.

    • [40] Du HY,Wang H,Luo YW,et al.An integrated analysis of bulk and single-cell sequencing data reveals that EMP1(+)/COL3A1(+)fibroblasts contribute to the bone metastasis process in breast,prostate,and renal cancers[J].Front Immunol,2023,14:1313536.

    • [41] Evans AJ.Treatment effects in prostate cancer[J].Mod Pathol,2018,31(S1):S110-S121.

    • [42] Omlin A,Pezaro C,Mukherji D,et al.Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms[J].Eur Urol,2013,64(2):300-306.

    • [43] Taavitsainen S,Engedal N,Cao S,et al.Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse[J].Nat Commun,2021,12(1):5307.

    • [44] Cheng Q,Butler W,Zhou YL,et al.Pre-existing Castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy[J].Eur Urol,2022,81(5):446-455.

    • [45] Bolis M,Bossi D,Vallerga A,et al.Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression[J].Nat Commun,2021,12(1):7033.

    • [46] He MX,Cuoco MS,Crowdis J,et al.Transcriptional mediators of treatment resistance in lethal prostate cancer[J].Nat Med,2021,27(3):426-433.

    • [47] Graff JN,Alumkal JJ,Drake CG,et al.Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer[J].Oncotarget,2016,7(33):52810-52817.

    • [48] Guan XN,Polesso F,Wang CJ,et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J].Nature,2022,606(7915):791-796.

  • 参考文献

    • [1] Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.

    • [2] Tang QY,Cheng B,Dai RY,et al.The role of androgen receptor in cross talk between stromal cells and prostate cancer epithelial cells[J].Front Cell Dev Biol,2021,9:729498.

    • [3] Tyekucheva S,Bowden M,Bango C,et al.Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer[J].Nat Commun,2017,8(1):420.

    • [4] Kang JN,La Manna F,Bonollo F,et al.Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer[J].Cancer Lett,2022,530:156-169.

    • [5] Hinshaw DC,Shevde LA.The tumor microenvironment innately modulates cancer progression[J].Cancer Res,2019,79(18):4557-4566.

    • [6] Haffner MC,Zwart W,Roudier MP,et al.Genomic and phenotypic heterogeneity in prostate cancer[J].Nat Rev Urol,2021,18(2):79-92.

    • [7] Lei YL,Tang R,Xu J,et al.Applications of single-cell sequencing in cancer research:progress and perspectives[J].J Hematol Oncol,2021,14(1):91.

    • [8] Zhang YJ,Wang D,Peng M,et al.Single-cell RNA sequencing in cancer research[J].J Exp Clin Cancer Res,2021,40(1):81.

    • [9] Yuan S,Norgard RJ,Stanger BZ.Cellular plasticity in cancer[J].Cancer Discov,2019,9(7):837-851.

    • [10] Shen MM,Abate-Shen C.Molecular genetics of prostate cancer:new prospects for old challenges[J].Genes Dev,2010,24(18):1967-2000.

    • [11] Henry GH,Malewska A,Joseph DB,et al.A cellular anatomy of the normal adult human prostate and prostatic urethra[J].Cell Rep,2018,25(12):3530-3542.e5.

    • [12] Guo WX,Li L,He J,et al.Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips[J].Nat Genet,2020,52(9):908-918.

    • [13] Song HB,Weinstein HNW,Allegakoen P,et al.Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states[J].Nat Commun,2022,13(1):141.

    • [14] Ge GZ,Han Y,Zhang JY,et al.Single-cell RNA-seq reveals a developmental hierarchy super-imposed over subclonal evolution in the cellular ecosystem of prostate cancer[J].Adv Sci(Weinh),2022,9(15):e2105530.

    • [15] Rajbhandary S,Dhakal H,Shrestha S.Tumor immune microenvironment(TIME)to enhance antitumor immunity[J].Eur J Med Res,2023,28(1):169.

    • [16] Schreiber RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.

    • [17] Majidpoor J,Mortezaee K.The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J].Clin Immunol,2021,226:108707.

    • [18] Liu YT,Sun ZJ.Turning cold tumors into hot tumors by improving T-cell infiltration[J].Theranostics,2021,11(11):5365-5386.

    • [19] Ma ZH,Zhang WW,Dong BJ,et al.Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy[J].Theranostics,2022,12(11):4965-4979.

    • [20] Xiang XN,Wang JG,Lu D,et al.Targeting tumor-associated macrophages to synergize tumor immunotherapy[J].Signal Transduct Target Ther,2021,6(1):75.

    • [21] Li CX,Xu XF,Wei SH,et al.Tumor-associated macrophages:potential therapeutic strategies and future prospects in cancer[J].J Immunother Cancer,2021,9(1):e001341.

    • [22] Siefert JC,Cioni B,Muraro MJ,et al.The prognostic potential of human prostate cancer-associated macrophage subtypes as revealed by single-cell transcriptomics[J].Mol Cancer Res,2021,19(10):1778-1791.

    • [23] Tuong ZK,Loudon KW,Berry B,et al.Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J].Cell Rep,2021,37(12):110132.

    • [24] Masetti M,Carriero R,Portale F,et al.Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer[J].J Exp Med,2022,219(2):e20210564.

    • [25] Zhang XY.Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer[J].Cancer Commun(Lond),2019,39(1):76.

    • [26] Laplane L,Duluc D,Bikfalvi A,et al.Beyond the tumour microenvironment[J].Int J Cancer,2019,145(10):2611-2618.

    • [27] Xin SY,Liu X,Li ZY,et al.ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer[J].Exp Hematol Oncol,2023,12(1):49.

    • [28] Chen SJ,Zhu GH,Yang Y,et al.Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J].Nat Cell Biol,2021,23(1):87-98.

    • [29] Hayes AR,Brungs D,Pavlakis N.Osteoclast inhibitors to prevent bone metastases in men with high-risk,non-metastatic prostate cancer:a systematic review and meta-analysis[J].PLoS One,2018,13(1):e0191455.

    • [30] Jovic D,Liang X,Zeng H,et al.Single-cell RNA sequencing technologies and applications:a brief overview[J].Clin Transl Med,2022,12(3):e694.

    • [31] Wagner J,Rapsomaniki MA,Chevrier S,et al.A single-cell atlas of the tumor and immune ecosystem of human breast cancer[J].Cell,2019,177(5):1330-1345.e18.

    • [32] Longo SK,Guo MG,Ji AL,et al.Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J].Nat Rev Genet,2021,22(10):627-644.

    • [33] Hirz T,Mei SL,Sarkar H,et al.Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses[J].Nat Commun,2023,14(1):663.

    • [34] Biffi G,Tuveson DA.Diversity and biology of cancer-associated fibroblasts[J].Physiol Rev,2021,101(1):147-176.

    • [35] Sahai E,Astsaturov I,Cukierman E,et al.A framework for advancing our understanding of cancer-associated fibroblasts[J].Nat Rev Cancer,2020,20(3):174-186.

    • [36] Friedman G,Levi-Galibov O,David E,et al.Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+)and PDPN(+)CAFs to clinical outcome[J].Nat Cancer,2020,1(7):692-708.

    • [37] Levi-Galibov O,Lavon H,Wassermann-Dozorets R,et al.Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer[J].Nat Commun,2020,11(1):6245.

    • [38] Monteran L,Erez N.The dark side of fibroblasts:cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J].Front Immunol,2019,10:1835.

    • [39] Vickman RE,Broman MM,Lanman NA,et al.Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment[J].Prostate,2020,80(2):173-185.

    • [40] Du HY,Wang H,Luo YW,et al.An integrated analysis of bulk and single-cell sequencing data reveals that EMP1(+)/COL3A1(+)fibroblasts contribute to the bone metastasis process in breast,prostate,and renal cancers[J].Front Immunol,2023,14:1313536.

    • [41] Evans AJ.Treatment effects in prostate cancer[J].Mod Pathol,2018,31(S1):S110-S121.

    • [42] Omlin A,Pezaro C,Mukherji D,et al.Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms[J].Eur Urol,2013,64(2):300-306.

    • [43] Taavitsainen S,Engedal N,Cao S,et al.Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse[J].Nat Commun,2021,12(1):5307.

    • [44] Cheng Q,Butler W,Zhou YL,et al.Pre-existing Castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy[J].Eur Urol,2022,81(5):446-455.

    • [45] Bolis M,Bossi D,Vallerga A,et al.Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression[J].Nat Commun,2021,12(1):7033.

    • [46] He MX,Cuoco MS,Crowdis J,et al.Transcriptional mediators of treatment resistance in lethal prostate cancer[J].Nat Med,2021,27(3):426-433.

    • [47] Graff JN,Alumkal JJ,Drake CG,et al.Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer[J].Oncotarget,2016,7(33):52810-52817.

    • [48] Guan XN,Polesso F,Wang CJ,et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J].Nature,2022,606(7915):791-796.

  • 用微信扫一扫

    用微信扫一扫