-
良性前列腺增生(benign prostate hyperplasia,BPH)是中老年男性引起下尿路症状最常见的疾病,组织学上表现为移行带的腺体增生,早期表现为尿频、夜尿增多,随着疾病的进展,梗阻加重,出现排尿迟缓、尿流变细,排尿时间延长等排尿期症状。其发病机制目前尚未明确。现有的研究普遍认为,衰老和雄激素水平的变化是引起BPH的主要因素。在前列腺中,睾丸产生的睾酮大部分转化为双氢睾酮,以自分泌或旁分泌的方式与上皮细胞、间质细胞的雄激素受体结合,引起前列腺的增生[1]。
-
磷酸肌醇3激酶-蛋白激酶B(PI3K/AKT)通路是一种常见的信号通路,它参与细胞的增殖、存活、蛋白质合成和葡萄糖代谢等生物过程。已有研究证实PI3K/AKT通路在前列腺癌、皮肤癌和乳腺癌中出现过度活化的现象[2-4]。但是关于PI3K/AKT通路的相关基因及蛋白质表达对BPH影响的研究近几年逐渐增多。例如Sreenivasulu等[5]为探讨PI3K/AKT及凋亡成分是否在前列腺增生组织中表达,对27例BPH患者术后获取的前列腺组织进行qPCR、蛋白质印迹和免疫组化等实验,结果显示,在体积较大的前列腺组织中,PI3K、AKT的基因表达及Bcl-2、半胱天冬酶-9的蛋白表达显著增加,表明PI3K/AKT可能在BPH的发展中发挥重要作用。本文就PI3K/AKT通路与BPH的研究进展进行综述。
-
1 PI3K/AKT信号通路的组成
-
PI3K是一种存在于细胞质中的脂质激酶,根据结构和底物特异性的不同,PI3K可分为I、II、III共3种类型。其中,I型由调节亚基P85和催化亚基P110组成,可被受体酪氨酸激酶(receptor tyrosine kinase,RTKs)激活。当细胞上的RTKs受到细胞外信号的激活后,RTKs将信号传导至PI3K,PI3K的激活会将导致3,4磷酸磷脂酰肌醇(PIP2)转化为3,4,5三磷酸磷脂酰肌醇(PIP3),从而激活下游蛋白。AKT是一种属于AGC家族的丝氨酸-苏氨酸蛋白激酶,主要包含PH结构域、催化结构域及调节结构域,其中PH结构域对PIP3有亲和力,在PI3K激活后,PIP3将AKT募集到细胞膜上,AKT在位点Thr308处被分子磷酸肌醇依赖性蛋白激酶1(PDK1)磷酸化,在位点Ser473处被哺乳动物雷帕霉素复合物2(Mtorc2)磷酸化,从而激活AKT,激活后的AKT进一步进入到细胞质中,并磷酸化下游底物,参与细胞周期的调控和其他生命活动[2,6]。
-
2 BPH相关因素与PI3K/AKT通路的关系
-
2.1 衰老前列腺细胞分泌的IL-6激活AKT通路
-
根据文献报道,BPH发病率从40岁的8%逐渐上升至90岁的90%,说明年龄在BPH的发生和发展中起着至关重要的作用[7]。衰老的细胞会聚集在人体组织中,包括前列腺。增生的前列腺上皮细胞中富含衰老细胞,这些衰老的前列腺上皮细胞会诱导衰老相关分泌表型,包括炎症细胞因子[如白细胞介素(IL)-1α、IL-6、IL-8等]、生长因子和趋化因子等,从而促进炎症浸润,形成前列腺炎症环境,激活包括AKT在内的ERK1/2及STAT5途径,进而促进细胞增殖[8-10]。IL-6是介导BPH免疫炎症的重要细胞因子,研究人员Royuela等[11]通过对BPH和前列腺癌中的IL-6家族细胞因子及其受体的表达进行免疫组化分析,发现IL-6主要在上皮细胞中表达,而在BPH及中、高Gleason级的前列腺癌标本中,IL-6的表达更为显著。有研究证明,IL-6可以通过反式信号传导途径激活PI3K/AKT通路,其中最显著的是抗凋亡和增殖的过程[12-13]。
-
2.2 雄激素通过上调IGF-1激活PI3K/AKT通路
-
雄激素对前列腺的生长发育起着关键作用,其中刺激前列腺生长的最主要的雄激素是睾酮[14]。在前列腺组织中,睾酮在5-α2型还原酶作用下转化为双氢睾酮(DHT),而DHT以自分泌或旁分泌的方式作用于邻近基质或上皮细胞,基质细胞通过自分泌或旁分泌的方式分泌多种生长因子[如胰岛素样生长因子(IGF)、成纤维细胞生长因子(FGF)、转化生长因子(TGF)等],以维持前列腺细胞稳态,双氢睾酮可通过调节生长因子及其受体的表达来刺激前列腺上皮和间质细胞的增殖[15-16]。IGF-1在癌症、骨骼肌萎缩等疾病研究中已被证明,可以刺激PI3K/AKT通路的传导,引起细胞增殖[17-18]。据研究报道,在体积较大的BPH组织中,IGF-1和IGF-2的表达水平更高,而胰岛素样生长因子结合蛋白(IGFBP)-3的表达明显降低,表明IGF-1的表达会对BPH患者的前列腺体积产生影响[19]。El-Shafei等[20]在研究辛伐他汀在睾酮诱导的BPH大鼠中的治疗效果中发现,睾酮诱导的BPH大鼠前列腺组织中,5-α还原酶水平显著增加,同时睾酮还明显上调了IGF-1/PI3K/AKT通路。这说明在IGF-1途径中,PI3K/AKT通路是控制细胞增殖和凋亡的关键下游信号,IGF-1通过与其受体IGF-1R结合,激活PI3K/AKT通路,参与细胞的增殖和凋亡。
-
2.3 PI3K/AKT通路参与炎症环境的形成
-
有研究发现,PI3K可能参与炎症调控的信号转导,4个I类的PI3K亚型(PI3Kα、PI3Kβ、PI3Kγ、PI3Kδ),其中PI3Kγ与PI3Kδ在白细胞中高表达,分别在趋化因子介导的炎症部位募集和激活先天免疫细胞的过程中,以及在抗原受体和细胞因子介导的B和T细胞发育、分化和功能中起着关键作用[21]。PI3Kβ、PI3Kδ和PI3Kγ参与优化树突状细胞和巨噬细胞功能的优化,当受到树突状细胞中CD80/CD86刺激时,PI3K信号传导可通过激活AKT下游的NF-κB来促进促炎细胞因子的产生,从而介导IL-6分泌[22]。
-
近年来,有研究指出炎症也参与BPH的发生和发展,并且在该疾病中起重要作用[23]。一项对282例BPH手术治疗患者的标本进行了免疫组化分析研究表明,在这些BPH样本中,81%含有T淋巴细胞标志物(CD3),52%含有B淋巴细胞标志物(CD20),82%含有巨噬细胞标志物(CD163),这一发现提示着炎症过程可能导致BPH,并部分解释了为什么抗雄激素治疗不能完全阻止BPH的进展[24]。前列腺的慢性炎症刺激会引起多种生长因子、细胞因子的分泌,进而导致组织的破坏、愈合和再生,最终导致BPH的进展[23]。M2巨噬细胞是前列腺炎症浸润的的主要细胞,通过分泌细胞因子及生长因子促进BPH的发病过程。Sheng等[25]研究发现,M2巨噬细胞介导的IL4,通过PI3K/AKT、JAK/STAT6和MAPK/ERK信号通路,选择性地诱导早期进展的BPH前列腺成纤维细胞的肌成纤维细胞表型。在研究M2a巨噬细胞对BPH的影响时发现,M2a巨噬细胞比其他类型的巨噬细胞表达更多的IGF-1,促进前列腺上皮细胞的增殖和EMT过程,然而,在敲除了IGF-1的细胞中,结果却是相反的[26]。表明M2巨噬细胞可以通过上调IGF-1的表达,进而促进前列腺上皮细胞的增殖及EMT过程。
-
2.4 抑制PI3K/AKT/mTOR通路可诱导自噬
-
自噬是一种自然、可调节的程序性细胞死亡行为,是通过与溶酶体融合形成自噬溶酶体降解细胞内受损或衰老细胞器、蛋白质,维持细胞正常功能及稳态的过程[27]。一些研究报道表明自噬参与了BPH的发展,在Hong等[28]的研究中发现,与未处理的小鼠相比,线粒体分裂抑制剂处理后的小鼠前列腺组织中的ATG14L和LC3的表达显著降低,并且观察到显著的细胞增殖。PI3K-AKT-mTOR途径被认为是调节自噬的主要途径之一,对细胞自噬有负向调节作用[29]。Liu等[30]对在雄激素诱导的去势大鼠前列腺增生过程中的作用进行探讨,并评估了PI3K/AKT/mTOR通路在这一过程中的作用,此外,还探讨了自噬对雄激素诱导BPH的影响。为了观察大鼠前列腺组织增生程度、细胞凋亡及自噬情况,研究人员将40只SD大鼠随机分为对照组、睾酮组、雷帕霉素组和3-甲基腺嘌呤(3-MA)组,结果显示,在雄激素诱导的去势大鼠前列腺增生过程中,雄激素可能通过PI3K/AKT/mTOR通路发挥作用。雷帕霉素能够抑制睾酮的作用,并通过抑制PI3K/AKT通路来抑制前列腺组织的增生。此外,雷帕霉素处理的大鼠前列腺组织LC3-II蛋白表达水平与对照组相似,显著高于睾酮组和3-MA组。并且,与对照组比较,雷帕霉素组未见明显的前列腺增生,说明雷帕霉素可以通过刺激自噬来抑制雄激素对前列腺组织增殖的促进作用。
-
然而,有研究显示,自噬对前列腺增生有促进作用[31]。5α-还原酶抑制剂是BPH的常用药,能够抑制睾酮转化为DHT,然而,部分BPH患者在接受药物治疗后仍存在进展,Yang等[32]在研究中发现5α-还原酶抑制剂能够降低前列腺中IGF-1的表达,进而下调PI3K-AKT-mTOR对自噬的负向调控作用,诱导细胞自噬,促进前列腺的增生。除PI3K-AKT-mTOR通路外,AMPK/mTOR通路也能够调节BPH中的细胞自噬,并且调节自噬相关的铁死亡对BPH的作用[33]。
-
2.5 PI3K/AKT通路与BPH中铁死亡的关系
-
铁死亡是由脂质过氧化驱动的铁依赖性细胞死亡,其主要生化特征包括细胞不稳定铁、大量活性氧(ROS)、谷胱甘肽过氧化物酶4(GPX4)活性降低及脂质代谢物的积累[34-35]。较多的证据表明,线粒体介导的ROS产生和DNA应激是脂质过氧化和铁死亡所必需的[36-37]。Li等[33]在研究中发现,相比于正常前列腺组织,前列腺增生组织中的铁死亡上调,ROS明显升高,且伴随着超氧化物歧化酶(SOD2)和过氧化氢酶(CAT)的减少。这表示铁死亡对BPH有促进作用。尽管在心血管、肾脏、肿瘤等疾病的相关研究已经证明,PI3K/AKT通路的激活能够抑制铁死亡[38-40],但是目前仍缺乏PI3K/AKT通路与BPH中铁死亡的相关机制研究。其他研究发现,缺氧可能刺激前列腺增生,并且还能上调缺氧诱导因子-1(HIF-1)以增加铁的摄取,进而影响铁死亡敏感性[41-42]。在缺氧条件下,BPH组织中的ROS的表达显著增加,ROS通过诱导PI3K/AKT和ERK磷酸化来上调HIF-1a的表达[43-44]。
-
3 通过抑制PI3K/AKT治疗BPH的药物
-
据报道,PI3K/AKT抑制剂是一种在肿瘤治疗领域已经得到广泛研究的药物[45]。然而,最近的研究表明,这种抑制剂对前列腺组织增生也有一定的减轻作用,相比于对照组,Bcl-2的表达水平在抑制剂组中显著下调,Bax的表达水平上调[46]。然而,除了药物治疗,草药也被广泛应用于改善前列腺增生症状。锯棕榈提取物可以降低IGF-I诱导的胰岛素受体底物-1的磷酸化,同时,还能抑制AKT激活下游信号,并诱导促凋亡蛋白JNK磷酸化,从而介导前列腺上皮的抗增殖和促凋亡作用,缓解BPH症状[47]。积雪草是一种具有促进伤口愈合和抗炎作用的植物,其提取物已被证明能够有效抑制BPH中与PI3K/AKT通路相关的蛋白的表达[48]。灵泽片是一种治疗肾虚血瘀湿阻证BPH的中成药,基于网络药学及分子对接技术,Chen等[49]对灵泽片治疗BPH的机制进行了研究,获得了137个灵泽片治疗BPH的主要靶点,并且通过构建PPI网络图,发现SRC、MAPK1、PIK3CA和JAK2的相互作用频率较高,随后,GO富集分析、KEGG信号通路分析以及进一步的分子对接结果表明,灵泽片主要通过调节SRC、MAPK1、PIK3CA、JAK2等靶点干预细胞迁移、细胞活性、细胞因子分泌、蛋白磷酸化、MAPK、转移酶活性、PI3K/AKT信号通路等生物学过程。这些研究结果为灵泽片治疗BPH的机制提供了实验思路,也为进一步研究和开发治疗BPH的新药物提供了借鉴。
-
4 小结
-
综上所述,BPH的发生和发展与前列腺微环境的改变密切相关。衰老、生殖激素的变化以及前列腺炎症等因素均能引起前列腺微环境的改变,进而导致多种细胞因子水平改变。PI3K/AKT通路在前列腺细胞的增殖、存活和凋亡中扮演着重要的角色,并且参与BPH相关因素的调控。该通路的激活能募集与活化免疫细胞,参与前列腺炎症环境的形成,反过来,炎症因子又成为该通路激活的因素。然而,作为负向调控细胞自噬的主要途径之一,当PI3K-AKT-mTOR通路受到抑制时,细胞自噬上调,进而促进BPH进展。尽管已经有研究表明铁死亡能够促进BPH,且其他研究已证实PI3K/AKT通路能够抑制铁死亡,但仍缺乏PI3K/AKT通路对BPH中铁死亡影响的研究。深入研究PI3K/AKT在BPH中的作用机制,能为BPH治疗提供新的思路和方法。
-
参考文献
-
[1] Cao DH,Sun RN,Peng L,et al.Immune cell proinflammatory microenvironment and androgen-related metabolic regulation during benign prostatic hyperplasia in aging[J].Front Immunol,2022,13:842008.
-
[2] Chang L,Graham PH,Ni J,et al.Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance[J].Crit Rev Oncol Hematol,2015,96(3):507-517.
-
[3] Yang SX,Polley E,Lipkowitz S.New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer[J].Cancer Treat Rev,2016,45:87-96.
-
[4] Wang F,Ma HX,Liu ZG,et al.α-Mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice[J].Biomed Pharmacother,2017,92:672-680.
-
[5] Sreenivasulu K,Nandeesha H,Dorairajan LN,et al.Over expression of PI3K-AkT reduces apoptosis and increases prostate size in benign prostatic hyperplasia[J].Aging Male,2020,23(5):440-446.
-
[6] Porta C,Paglino C,Mosca A.Targeting PI3K/akt/mTOR signaling in cancer[J].Front Oncol,2014,4:64.
-
[7] Langan RC.Benign prostatic hyperplasia[J].Prim Care,2019,46(2):223-232.
-
[8] Tchkonia T,Zhu Y,van Deursen J,et al.Cellular senescence and the senescent secretory phenotype:therapeutic opportunities[J].J Clin Invest,2013,123(3):966-972.
-
[9] Vital P,Castro P,Tsang S,et al.The senescence-associated secretory phenotype promotes benign prostatic hyperplasia[J].Am J Pathol,2014,184(3):721-731.
-
[10] Jiang SL,Song CS,Chatterjee B.Stimulation of prostate cells by the senescence phenotype of epithelial and stromal cells:implication for benign prostate hyperplasia[J].FASEB Bioadv,2019,1(6):353-363.
-
[11] Royuela M,Ricote M,Parsons MS,et al.Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign,hyperplasic,and malignant human prostate[J].J Pathol,2004,202(1):41-49.
-
[12] Nguyen DP,Li JY,Tewari AK.Inflammation and prostate cancer:the role of interleukin 6(IL-6)[J].BJU Int,2014,113(6):986-992.
-
[13] Zegeye MM,Lindkvist M,Fälker K,et al.Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells[J].Cell Commun Signal,2018,16(1):55.
-
[14] Vickman RE,Franco OE,Moline DC,et al.The role of the androgen receptor in prostate development and benign prostatic hyperplasia:a review[J].Asian J Urol,2020,7(3):191-202.
-
[15] Carson C 3rd,Rittmaster R.The role of dihydrotestosterone in benign prostatic hyperplasia[J].Urology,2003,61(4 Suppl 1):2-7.
-
[16] La Vignera S,Condorelli RA,Russo GI,et al.Endocrine control of benign prostatic hyperplasia[J].Andrology,2016,4(3):404-411.
-
[17] Vivanco I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer[J].Nat Rev Cancer,2002,2(7):489-501.
-
[18] Timmer LT,Hoogaars WMH,Jaspers RT.The role of IGF-1 signaling in skeletal muscle atrophy[J].Adv Exp Med Biol,2018,1088:109-137.
-
[19] Sreenivasulu K,Nandeesha H,Dorairajan LN,et al.Gene expression of insulin receptor,insulin-like growth factor increases and insulin-like growth factor-binding protein-3 reduces with increase in prostate size in benign prostatic hyperplasia[J].Aging Male,2018,21(2):138-144.
-
[20] El-Shafei NH,Zaafan MA,Kandil EA,et al.Simvastatin ameliorates testosterone-induced prostatic hyperplasia in rats via modulating IGF-1/PI3K/AKT/FOXO signaling[J].Eur J Pharmacol,2023,950:175762.
-
[21] Hawkins PT,Stephens LR.PI3K signalling in inflammation[J].Biochim Biophys Acta,2015,1851(6):882-897.
-
[22] Koorella C,Nair JR,Murray ME,et al.Novel regulation of CD80/CD86-induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2,3-dioxygenase production by dendritic cells[J].J Biol Chem,2014,289(11):7747-7762.
-
[23] Gandaglia G,Briganti A,Gontero P,et al.The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia(BPH)[J].BJU Int,2013,112(4):432-441.
-
[24] Robert G,Descazeaud A,Nicolaïew N,et al.Inflammation in benign prostatic hyperplasia:a 282 patients' immunohistochemical analysis[J].Prostate,2009,69(16):1774-1780.
-
[25] Sheng JD,Yang Y,Cui Y,et al.M2 macrophage-mediated interleukin-4 signalling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia[J].Cell Death Dis,2018,9(7):755.
-
[26] Qian QF,He WX,Liu DQ,et al.M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulin-like growth factor 1 knockdown[J].Prostate,2021,81(9):530-542.
-
[27] Mizushima N,Komatsu M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741.
-
[28] Hong GL,Kim KH,Kim YJ,et al.Decreased mitophagy aggravates benign prostatic hyperplasia in aged mice through DRP1 and estrogen receptor Α[J].Life Sci,2022,309:120980.
-
[29] Yu XL,Long YC,Shen HM.Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy[J].Autophagy,2015,11(10):1711-1728.
-
[30] Liu RF,Fu G,Li J,et al.Roles of autophagy in androgen-induced benign prostatic hyperplasia in castrated rats[J].Exp Ther Med,2018,15(3):2703-2710.
-
[31] Zhang N,Ji N,Jiang WM,et al.Hypoxia-induced autophagy promotes human prostate stromal cells survival and ER-stress[J].Biochem Biophys Res Commun,2015,464(4):1107-1112.
-
[32] Yang BY,Jiang CY,Dai CY,et al.5-ARI induces autophagy of prostate epithelial cells through suppressing IGF-1 expression in prostate fibroblasts[J].Cell Prolif,2019,52(3):e12590.
-
[33] Li Y,Zhou YY,Liu DQ,et al.Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK/ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate[J].J Transl Med,2023,21(1):575.
-
[34] Li J,Cao F,Yin HL,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88.
-
[35] Liu J,Kang R,Tang DL.Signaling pathways and defense mechanisms of ferroptosis[J].FEBS J,2022,289(22):7038-7050.
-
[36] Gao MH,Yi JM,Zhu JJ,et al.Role of mitochondria in ferroptosis[J].Mol Cell,2019,73(2):354-363.e3.
-
[37] Li CF,Zhang Y,Liu J,et al.Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J].Autophagy,2021,17(4):948-960.
-
[38] Yi JM,Zhu JJ,Wu J,et al.Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J].Proc Natl Acad Sci USA,2020,117(49):31189-31197.
-
[39] Tang Z,Wang Y,Liu Y,et al.Salidroside inhibits renal ischemia/reperfusion injury-induced ferroptosis by the PI3K/AKT signaling pathway[J].Exp Ther Med,2023,26(5):507.
-
[40] Xiao YH,Yu Y,Hu LL,et al.Matrine alleviates sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis[J].Inflammation,2023,46(5):1684-1696.
-
[41] Saito M,Tsounapi P,Oikawa R,et al.Prostatic ischemia induces ventral prostatic hyperplasia in the SHR;possible mechanism of development of BPH[J].Sci Rep,2014,4:3822.
-
[42] Gao X,Hu W,Qian DL,et al.The mechanisms of ferroptosis under hypoxia[J].Cell Mol Neurobiol,2023,43(7):3329-3341.
-
[43] Du J,Xu R,Hu ZZ,et al.PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells[J].PLoS One,2011,6(9):e25213.
-
[44] Ren HL,Li XN,Cheng GJ,et al.The effects of ROS in prostatic stromal cells under hypoxic environment[J].Aging Male,2015,18(2):84-88.
-
[45] Jiang HG,Fan DS,Zhou GY,et al.Phosphatidylinositol 3-kinase inhibitor(LY294002)induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo[J].J Exp Clin Cancer Res,2010,29(1):34.
-
[46] 金鹏,王荫槐,彭佑共,等.PI3K/AKT抑制剂对前列腺增生的影响及机制研究[J].中华男科学杂志,2010,16(12):1068-1075.
-
[47] Wadsworth TL,Carroll JM,Mallinson RA,et al.Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells[J].Endocrinology,2004,145(7):3205-3214.
-
[48] Choi YJ,Fan MQ,Wedamulla NE,et al.Inhibitory effects of Centella asiatica(L.)Urban on enlarged prostate through androgen receptor and PI3K/Akt signaling pathways[J].Food Funct,2022,13(19):10235-10247.
-
[49] Chen SF,Li CX,Geng Q.The mechanism of Lingze Tablets in the treatment of benign prostatic hyperplasia based on network pharmacology and molecular docking technology[J].Andrologia,2022,54(10):e14555.
-
摘要
良性前列腺增生是引起中老年男性下尿路症状的最常见疾病之一,对患者的生活质量产生极大的影响。但目前良性前列腺增生的病因仍不清楚。磷酸肌醇3激酶-蛋白激酶B(PI3K/AKT)是常见的信号通路之一,P13K/AKT信号通路的激活可参与细胞的增殖、存活、蛋白质合成和葡萄糖代谢等生物过程。研究表明PI3K/AKT在良性前列腺增生的发生发展中具有重要作用。本文PI3K/AKT信号通路的组成、BPH相关因素与PI3K/AKT通路的关系、通过抑制PI3K/AKT治疗BPH的药物共3个方面总结了近年来PI3K/AKT通路在良性前列腺增生中的研究进展。
关键词
良性前列腺增生 ; PI3K/AKT通路 ; 前列腺微环境